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Dynamic regimes

Definition (Dynamic regime)

A dynamic regime g = (go, - . ., k), Where gi : (3xk_1, /x) — ax, is a policy
that assigns treatment (p_ossibly at multiple time points) based on the
measured history (Ax_1, Lg).

We will restrict ourselves to settings where

8k - (/k) — dk
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Dynamic regime SWIGs

Definition (d-SWIG from Robins and Richardson)
Given a template G(a) and a dynamic regime g for 3, the d-SWIG G(g) is
defined by applying the following transformation:
@ Replace each fixed node aj with a random node Af+ that inherits
children from a;. Include dashed directed edges from every variable
that is an input to the function g; that determines the variable A,ing.

@ Each random node V; that is a descendant of at least one variable
A‘;”+ is relabeled as VZ.
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Time-varying exposures (treatments) are frequent

Examples:
@ Smoking status, which depends on other events in life.

@ A therapeutic drug, for which the dose is adjusted according to the
response over time (patients take the drug every day, every week etc)

@ Cancer screening, which e.g. depends on previous diagnostic tests.

@ Surgical interventions (e.g. transplants) are given at a certain time
after the diagnosis.

@ Expression of genes.

Mats Stensrud Randomisation and Causation Spring 2025 176 / 422



Running example: HIV

Consider a 5-year follow-up study of individuals infected with the human
immunodeficiency virus (HIV)33.

o Ay takes value 1 if the individual receives antiretroviral therapy in
month k, and 0 otherwise. Define A_1 = 0.

@ Suppose Y measures health status at 5 years of follow-up.

@ So far we have considered deterministic treatment rules, for example
"always treat”, where the outcome of interest is Y= vs " never
treat”, where the outcome of interest is Y2=0,

When A = Ak, we can define 2K such static regimes...

@ However, often we want to make dynamic treatment decisions.

o Let Ly € {0,1} be an indicator of low CD4 cell count measured at
month k.

@ Depending on the value of Ly, we may argue that it is good or bad to
start treatment at time k.

3Hernan and Robins, Causal inference: What if?
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Example of Dynamic Regime

A simple example of a dynamic regime g for setting with two treatments is
+
(] Ag = 40-
gt _ ja
o A7T = L7
In the HIV example this would mean that you are treated at time 1 if
the CD4 cell count is low at that time.
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Static vs dynamic

Y& 1L Ag and Y& 1L AP | LY, Ao.
Consistency gives: Y& 1l Ag and Y& 1L Ay | L1, Ao = ao.
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|dentification results for dynamic regimes

@ We can use the same identification conditions (independencies in
Slide 163) as for static regimes, only if Af’:Jr is not a function of AJgJr

for j < k; that is, Aﬁ’L cannot be written a function of only L.
However, we need to use the extended g-formula as the identification
formula (as defined in Slide 184).

o if Af+ is a function of Ajf’rJr for any j < k, we need slightly stronger

conditions (we are not presenting them now). This is e.g. the case in
the graph in Slide 182 (due to the red arrow).
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Does the identification conditions hold in the following
Dynamic SWIG?

Y& /I Ag because Ag < Hy — L? — A8 — Y& is open. However, we
would have identification in a static SWIG where A§+ = a;1. So, in that
sense, dynamic regimes require stronger conditions for identification, even
though the independencies are stated in the same way.
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HIV SWIG

A (busy) graph illustrating a conditional RCT, where Hy and H; are
hidden variables (e.g. the actual immune status of the patient).
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Consistency for dynamic regimes

Now we state a more general consistency con dition, which is valid for
time-varying dynamic regimes. Indeed, it can simply be expressed as

if Ax = A% then YE = Y.

A special case for static regimes is: if Ax = 3k, then Y2 =Y.
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Marginal extended g-formula under interventions that

depend on Ly

Suppose that gy is only a function of L,. Then, the marginal extended g-formula
is defined as the following function of observed random variables Lk, Ak, Y,
topologically ordered Lo, Ao, ..., Lk, Ak, Y.

Definition (Marginal extended g-formula)

K
be(y) =D ey | T 3k) [T pUi | Ti-1,35-1)P5 (31 | 1),
EPR J=0

where Iy = (I, ..., lx), k < K, are instantiations of observed variables and
p&(a; | 1) is the density of A" given Zf, which is determined by g.

We let variables indexed by subscript —1, e.g. L_; be empty.
Note that p&(ax | /x) is a known function. It is determined by the investigator
(even if it has a superscript g). If gi is a deterministic function of /, then

- 1if al, = gi(/
P [T =4 DB
0if a, # g(lk), ke A{0,...,K}.
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Relation to the g-formula for static regimes

The dynamic extended g-formula density generalizes the marginal
g-formula from slide 163, because for a static intervention that sets
a=(ao,...,ak) we have that for k € {0,...,K},

_ 1if 3, = a,
ga) | Ix) = k ’
PE(aic | 1) { 0if 2, # ax.
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SWIG criterion to identify effects of dynamic regimes (you
do not need to understand the extended g-formula density)

Definition (extended g-formula density)

The dynamic extended g-formula density for Y = Yk under treatment regime g

given by the functions gy, ..., gk that determine Ax = (Ao, ..., Ax) is
K K
fg(}/7 IK35K75;) = p(y | IKaE?E) Hp(lja aj | /j—lagj'_—l) l_ng(a;r | paAf"’)y
j=0 t=0
where Iy = (I, ..., lx), k < K, are observed variables, p&(a; | pays+) is the

density of AT given PA e+ is the input to gy, for t € {0, K}.

James M Robins. “A new approach to causal inference in mortality studies with a
sustained exposure period—application to control of the healthy worker survivor effect”.
In: Mathematical modelling 7.9-12 (1986), pp. 1393-1512; Thomas S Richardson and
James M Robins. “Single world intervention graphs (SWIGs): A unification of the
counterfactual and graphical approaches to causality”. In: Center for the Statistics and
the Social Sciences, University of Washington Series. Working Paper 128.30 (2013).
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Plan for today

@ Review foundations of estimation theory that are relevant to causal
inference.
o Statistical models (Parametric and non-parametric).
o Correctly specified models.
@ Motivate why we need to study certain estimation problems.
o Convergence of conditional means.
@ Introduce some commonly used estimators: Regression estimators and
inverse probability weighted estimators.
o Brief summary of linear models.
o Logistic regression models.

o M-estimators.
o Link this back to counterfactuals.
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Estimation in causal inference settings (informal

motivation)

@ An identification formula motivates estimators.

e Estimation in causal inference settings is, in principle, identical to the
"inverse” problem you have studied in previous statistics classes.

@ However, the functionals we are estimating are sometimes unusual,
and therefore we sometimes need new estimators. Indeed, a lot of
identification results in causal inference have motivated new
estimation theory.

@ Broadly speaking, causal inference researchers are concerned about
bias.

o After doing the hard work of deriving an identification formula, we do
not want to induce bias in the estimation step either.

@ | remind you about how we divide the causal inference into different
tasks: (i) Define your question of interest (estimand), (ii) Evaluate
whether the estimand is identified, (iii) if the estimand is identified,
we proceed with estimation.
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o Systematic bias: We say there is systematic bias if the causal
estimand of interest is not identified.
Informally, any structural association between the treatment and the
outcome that does not arise from the causal effect of treatment on
the outcome.

@ Bias due to model misspecification: When we use a statistical model
that is misspecified (I give a formal definition of model
mis-specification in a later slide).
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Estimation vs. identification

@ We have considered identification assumptions that are necessary
even if we had an infinite amount of data.

@ The statistical modeling assumption we consider now are invoked
because we do not have infinite amount of data.

PS: In this course we will mainly consider frequentist inference: probability
is defined as a limiting frequency. An alternative is Bayesian inference,3*
which defines probability as a degree of belief.

34 Again, this is not the same as a Bayesian network
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Motivation for regression modelling and the curse of
dimensionality

Definition (Statistical model)

A statistical model P is a collection of laws, P = {P, : n € ['}.

Definition (Parametric statistical model)

A statistical model P is parametric P = {Py : § € ©}, where © C R¥ for
a positive integer k.

So far we have been non-parametric: we have not restricted ourselves to
parametric models. This is arguably desirable, because then we do not
impose parametric restrictions on the data generating mechanism.

Mats Stensrud Randomisation and Causation Spring 2025 193 /422



Motivation: Simple mean estimation

@ Suppose we are interested in estimating a parameter, say, h(L, A, Y) from an
observed sample of n observations, (L;,A;, Yi), i=1,...,n.

@ Suppose we would like to ignore the assumptions encoded in our model P
when we study h(L, A, Y'); more precisely, we will only use the fact that we
have draws from i.i.d. individuals where E(Y') = 1 and that Y is continuous
with finite variance 02 < oco.

@ Our statistical model is non-parametric;
P={P(Y =y): [y*f(y)dy < oo}. For h(L,A,Y)=E(Y), we would
simply do the empirical mean (sample mean) E,(Y) = 13" | Y;. By the
weak law of large numbers (WLLN),

lim P(|Eq(Y) — pl > ) = 0.

So the estimator is consistent. Indeed, the estimator is y/n-consistent, and
by the CLT /n(E,(Y) — p) ~ N(0,0?).

@ Because E,(Y) has variance o?/n, which is Op(1/n), then +/n(E,(Y) — ) has
variance ¢ which is Op(1), i.e. "bounded in probability” or "uniformly tight”: A
sequence {Q,} is uniformly tight if for all € > 0 there exists an M s.t.
sup, P(|@Qn] > M) < e.
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Motivation continues

@ Now, suppose L is continuous and our parameter of interest is the
conditional mean h(L, A, Y)=E(Y | L).

@ In particular, to estimate E(Y | L = /) there exists at most one individual /
with L; =/ and E,(Y | L =1) = Y;, regardless of n, and clearly we do not
have /n-consistency.

@ Thus, we have to do something else...
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Parameteric modelling

@ Can we really say that the distribution that generated the data
belongs to a parametric model?

@ The answer is no in most settings. Therefore many argue that
non-parametric methods are more desirable.

@ However, it is often argued that studying parametric models is useful
(i) because they can be good approximations, (ii) sometimes we have
knowledge about the data generating mechanism and (iii) they
provide the background for understanding non-parametric methods.
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Reminder: Maximum Likelihood Estimation (MLE)

Consider a vector 8 = [61, 0, ..., Gk]T of parameters that indexes the
distribution {f(-;0) | 8 € ©}, where © is a parameter space.
We evaluate the observed data sample Y = (Y, Y2,...,Y,), which gives us the
likelihood,

L,(0) = Ln(0;Y) = 1,(Y;0),

where 1,(Y;0) is a product of n density functions evaluated at
Y = (Y1, Ya,..., Ya).
MLE maximises the likelihood, i.e.

0 =argmaxL,(0;Y).
0co

The logarithm is a monotone function, and thus it is more convenient to
maximise the log-likelihood: £(6;Y) =logL,(6;Y). If £(8;Y) is differentiable in
6, we solve M(Y;0) = %, , i.e. the score equations (also called likelihood
equations)

o ov
p]_:aiol—o, 8702—07 ey 870,(—0
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Likelihood continues

We need local concavity. Thus, the Hessian matrix

84 824

90 lo—g 90002097
[oatd o4
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¢
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is negative semi-definite at 0. The Fisher information matrix is defined as

I(6) = E [H (5)]
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